Физики впервые показали конденсацию «жидкого света» в полупроводнике толщиной всего в один атом

Международная группа физиков впервые экспериментально показала, как в тончайшей одноатомной пленке кристалла-полупроводника формируется конденсат Бозе — Эйнштейна: десятки тысяч квантов «жидкого света»

Международная группа физиков, в которую вошел руководитель лаборатории оптики спина СПбГУ профессор Алексей Кавокин, впервые экспериментально показала, как в тончайшей одноатомной пленке кристалла-полупроводника формируется конденсат Бозе — Эйнштейна: десятки тысяч квантов «жидкого света». Это открытие поможет создать новые типы лазеров, способные производить кубиты — главные составные элементы квантовых компьютеров будущего. Результаты исследования опубликованы в престижном научном журнале Nature Materials.

Физики впервые показали конденсацию «жидкого света» в полупроводнике толщиной всего в один атом

Коллектив лаборатории оптики спина имени И.Н. Уральцева СПбГУ в коридоре здания Двенадцати коллегий

 

Идея создания квантовых компьютеров — мощнейших вычислительных машин, работающих по законам квантового мира и способных решать многие задачи эффективнее самых производительных суперкомпьютеров, давно завладела умами ученых и специалистов IT-корпораций. Подобные разработки ведутся, например, в Google и IBM, однако многие такие проекты требуют использования криостатов — резервуаров с жидким азотом или сжатым гелием, внутри которых квантовые процессоры охлаждаются до температуры ниже минус 270 градусов по Цельсию. Столь низкая температура нужна для сохранения эффекта сверхпроводимости, который необходим для работы квантовых компьютеров.

Разработки Алексея Кавокина и его коллег связаны с созданием поляритонной платформы для квантовых вычислений. Одно из главных ее преимуществ — возможность проводить квантовые вычисления при комнатной температуре. Поляритонный лазер, работающий на открытом Алексеем Кавокиным и его коллегами принципе бозе-эйнштейновской конденсации экситонных поляритонов при комнатной температуре, позволяет создавать кубиты — базовые элементы квантовых компьютеров. Кубиты реализуются методом лазерного облучения искусственных полупроводниковых структур — микрорезонаторов.

В новом исследовании ученым удалось впервые экспериментально наблюдать, как в самом тонком в мире полупроводнике — тончайшем слое кристалла диселенида молибдена (MoSe2) толщиной всего в один атом — формируется конденсат Бозе — Эйнштейна, то есть десятки тысяч квантов «жидкого света», точное имя которых — экситонные поляритоны. Эти частицы обладают свойствами как света, так и обычных материальных частиц, и их можно использовать в качестве носителей информации. То есть вместо электронов по микросхемам любых электронных устройств может бегать электрически нейтральная светожидкость. Поляритонные приборы позволят обрабатывать огромные потоки информации со скоростью, близкой к скорости света.

Физики впервые показали конденсацию «жидкого света» в полупроводнике толщиной всего в один атом

Результат теор. расчета распределения «жидкого света» в фазовом пространстве сверхтонкого двумерного кристалла. Яркие пятна — это бозе-эйнштейновские конденсаты экситонных поляритонов. Экспериментально они были обнаружены там, где предсказали ученые

 

В исследовании приняли участие физики из Вюрцбургского университета (Германия), Калифорнийского университета в Мерседе (США), Университета Вестлейка (Китай), Университета штата Аризона (США), Национального Института материаловедения (Япония) и Санкт-Петербургского государственного университета (Россия).

«Конденсат Бозе — Эйнштейна был получен в полупроводниковом микрорезонаторе, содержащем слой нового кристаллического материала диселенида молибдена толщиной в один атом. Локализация света в слое такой малой толщины была достигнута впервые, — рассказал об открытии профессор Алексей Кавокин. — В результате этого исследования могут быть созданы новые типы лазеров, основанные на двумерных кристаллах, позволяющие создавать кубиты — квантовые транзисторы, основу квантового компьютера, работающего на светожидкости».

Важно понимать: как не раз отмечал ученый, квантовые компьютеры называют сегодня атомной бомбой XXI века, ведь они открывают огромные возможности не только в области, например, создания новых лекарств, но и в области кибератак. Имея компьютер с такими мощностями, можно разгадать практически любой шифр, поэтому перед учеными сегодня также стоит важная задача защиты квантовых устройств — квантовой криптографии, в которой открытия Алексея Кавокина и его коллег также играют очень важную роль.

Исследование было поддержано грантами Немецкого научно-исследовательского сообщества (DFG), Европейского исследовательского совета (ERC), Немецкого фонда академических стипендий Studienstiftung, грантами Университета Вестлейка (Китай), Санкт-Петербургского государственного университета (Россия) и других научных организаций.

 

Информация предоставлена пресс-службой СПбГУ

Источник фото: https://spbu.ru/

Источник: scientificrussia.ru



Добавить комментарий